首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10774篇
  免费   1489篇
  国内免费   5976篇
  2024年   15篇
  2023年   408篇
  2022年   468篇
  2021年   562篇
  2020年   711篇
  2019年   817篇
  2018年   775篇
  2017年   745篇
  2016年   702篇
  2015年   712篇
  2014年   700篇
  2013年   876篇
  2012年   692篇
  2011年   672篇
  2010年   551篇
  2009年   723篇
  2008年   642篇
  2007年   745篇
  2006年   643篇
  2005年   632篇
  2004年   539篇
  2003年   551篇
  2002年   467篇
  2001年   416篇
  2000年   360篇
  1999年   369篇
  1998年   273篇
  1997年   277篇
  1996年   271篇
  1995年   249篇
  1994年   236篇
  1993年   197篇
  1992年   179篇
  1991年   143篇
  1990年   153篇
  1989年   146篇
  1988年   116篇
  1987年   88篇
  1986年   68篇
  1985年   60篇
  1984年   54篇
  1983年   18篇
  1982年   68篇
  1981年   39篇
  1980年   32篇
  1979年   28篇
  1978年   8篇
  1977年   10篇
  1973年   7篇
  1958年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
43.
Cord-forming fungi form extensive networks that continuously adapt to maintain an efficient transport system. As osmotically driven water uptake is often distal from the tips, and aqueous fluids are incompressible, we propose that growth induces mass flows across the mycelium, whether or not there are intrahyphal concentration gradients. We imaged the temporal evolution of networks formed by Phanerochaete velutina, and at each stage calculated the unique set of currents that account for the observed changes in cord volume, while minimizing the work required to overcome viscous drag. Predicted speeds were in reasonable agreement with experimental data, and the pressure gradients needed to produce these flows are small. Furthermore, cords that were predicted to carry fast-moving or large currents were significantly more likely to increase in size than cords with slow-moving or small currents. The incompressibility of the fluids within fungi means there is a rapid global response to local fluid movements. Hence velocity of fluid flow is a local signal that conveys quasi-global information about the role of a cord within the mycelium. We suggest that fluid incompressibility and the coupling of growth and mass flow are critical physical features that enable the development of efficient, adaptive biological transport networks.  相似文献   
44.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   
45.
There was little release of extractable SO4-S during four weeks from CS2 applied by injecting into two S-deficient soils. In this incubation experiment, the rate of CS2 was 30 μg S g, placement was injection at 9 cm depth, soil temperature was 20°C, and soil moisture tension was 33 kPa. The yield of barley forage after seven weeks in the greenhouse showed only small increases from 10 or 30 μg S g−1 of CS2 as compared to Na2SO4, on the two soils. While CS2 supplied little plant available S in the short term, it was an effective inhibitor of nitrification. In the laboratory, or in the field, the injection of CS2 (with N fertilizers) at a point 9 cm into the soils either stopped or reduced nitrification. In one laboratory experiment, 35 μg of CS2 g−1 of soil with urea reduced nitrification for at least four weeks; and in another experiment 20 μg of CS2 g−1 of soil with aqua NH3 nearly or completely inhibited nitrification at 20 days. In two field experiments, 3 and 12 μg of CS2 g−1 of soil (or 6 and 24 kg ha−1) with aqua NH3 inhibited nitrification from October to the subsequent May. In addition, CS2 reduced the amount of ammonium produced from the soil N, both in these two field experiments and in the laboratory experiments. That is to say, CS2 injected at a point, inhibited both nitrification and ammonification. In other field experiments, CS2 at a rate of 10 kg ha−1 was injected in bands 9 cm deep with urea in October, and by May there was still reduced nitrification. Less than half of the fall-applied urea alone was recovered as mineral N, but with the application of CS2 the recovery was increased to three-quarters. The yield and N uptake of barley grain was increased where fall-applied banded urea or aqua NH3 received banded CS2, (NH4)2CS3, or K2CS3. The average increase in yield from fall-applied fertilizer, from inhibitor with fall-applied fertilizer, and from spring-applied fertilizer was 800, 1370, and 1900 kg ha−1, respectively. In the same order, the apparent % recovery of fertilizer N in grain was 24, 42, and 60.  相似文献   
46.
In order to determine which species of geophilic dermatophytes were present in Western Australian soils 299 samples were investigated. These samples were collected from a range of locations, 208 from towns throughout the state and 91 samples from the Perth Metropolitan area.Most samples were collected from areas frequented by people and animals, such as home gardens, parks and animal yards.Of the total 299 soils, 271 (90.6 %) yielded keratinophilic fungi. A total of 181 dermatophytes were isolated, and there were 205 isolations of other keratinophilic fungi. Microsporum gypseum (30.7 %) was the most prevalent dermatophyte recovered from soil followed byMicrosporum cookei (21.7 %) and thenTrichophyton ajelloi (8.0 %). No other dermatophytes were recovered.Chrysosporium indicum was the most common of all the keratinophilic fungi and was isolated from 50.1 % of the samples. Mixed growth was obtained from 33.5 % of the soil samples.  相似文献   
47.
A promising producer of bioactive compounds isolated from a Brazilian tropical soil was tested for its range of antimicrobial activities. Strain 606, classified as Streptomyces sp., could not be identified up to species level, suggesting a possible new taxon. The supernatant and 10 extracts and fractions, obtained by extraction and chromatographic techniques, presented antimicrobial activity using antibiograms. The methanolic fraction was highly active against pathogenic bacteria, phytopathogenic fungi and the human pathogenic yeast Candida albicans. It also possessed high antiviral activity inhibiting the propagation of an acyclovir-resistant herpes simplex virus type 1 strain on HEp-2 cells at non-cytotoxic concentration. The strong cytotoxic effect suggests an antitumour action. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
48.
49.
Soil and climate are major constituents of the French notion of Terroir. This concept implies that there is a strong relationship between the composition of the grape, the characteristics of the wine and the territory of production. To study this link, a new method of characterization of the Terroir, including geological and pedological factors, was investigated. It uses a field model based on depth and clay content of soil, together with the degree of weathering of the parent rock. Consequently, for every type of parent rock belonging to a given geologic stage, there are a series of soils that show different stages of pedological evolution. According to the model, three kinds of soils are distinguished with regards to the weathering intensity of the parent rock, that are named weakly weathered rock (WWR), moderately weathered rock (MWR) and strongly weathered rock (SWR). By hypothesis, each soil type is considered as a homogeneous unit for vine production from the viewpoint of ecophysiological factors. Each terroir unit defined by this method is called a Basic Terroir Unit (BTU). To validate this hypothesis, experimental plots planted with Chenin and Cabernet Franc vines were studied over three consecutive seasons (2000–2002), in the Anjou vineyard (Loire Valley – France). The major BTUs developed on the two most important geological systems of Anjou (Brioverian and Ordovician–Devonian), were studied. Results showed that the berries of vines cultivated in WWR were significantly smaller, richer in sugars and anthocyanins and had a Total Phenolic Index higher than those of the vines cultivated in SWR. They also had a lower titratable acidity. Cabernet Franc vines cultivated in MWR had berries with sugar and anthocyanin contents but also total phenolics very close to those of WWR. With Chenin vines there was a good relationship between the global pool of free aromas of berries and the BTU type. The study showed significant relationships between the quality of grapes and the measured values of several ecophysiological variables such as the water supply regime or the timing of budburst.  相似文献   
50.
The nitrogen and phosphorus content of two temperate fishes, Rutilus rutilus and Perca fluviatilis , and six tropical fishes, Oreochromis niloticus , Cichla monoculus , Serrassalmus rhombeus , Plagioscion squamosissimus , Prochilodus brevis and Hoplias malabaricus , were investigated to test the hypothesis that variation in body P content and N:P ratio is related to body size. Regressions of %P and N:P ratios against fish size (length and mass) confirmed the hypothesis for P. fluviatilis and P. squamosissimus , suggesting that body size is an important factor driving body P content and N:P ratios in some fishes. Moreover, significant increases in %N and N:P ratio with body size was found for H. malabaricus , a common piscivorous fish of the Neotropics. Interspecific variation in %P and N:P ranged two-fold and significant differences ( P < 0·05) were found among the tested species. The mean ± s . d . elemental content across all fishes ( n = 170) was 10·35 ± 1·29% for N and 3·05 ± 0·82% for P, while the N:P ratio was 8·00 ± 2·14. Data on fish body nutrient content and ratio will improve parameterization of bioenergetics and mass balance models and help clarify the role of fishes in nutrient cycles in both temperate and tropical freshwaters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号